
University of British Columbia, Vancouver
Department of Computer Science

CPSC 304 Project Cover Page

Milestone #: 4

Date: August 5th, 2024

Group Number: 31

 Name Student Number CS Alias (Userid) Preferred Email Address

 Leyang Pan 93460962 yang0526 yangplypan@gmail.com

Binjie Ye 29415965 yebinjie yebinjie2021@163.com

 Cheryl Chen 44983922 cchen70 chen.q.cheryl@gmail.com

By typing our names and student numbers in the above table, we certify that the
work in the attached assignment was performed solely by those whose names
and student IDs are included above. (In the case of Project Milestone 0, the main
purpose of this page is for you to let us know your email address, and then let us
assign you to a TA for your project supervisor.)

In addition, we indicate that we are fully aware of the rules and consequences of
plagiarism, as set forth by the Department of Computer Science and the
University of British Columbia.

University of British Columbia, Vancouver
Department of Computer Science

Repository Link:

https://github.students.cs.ubc.ca/CPSC304-2024S-T2/project_i1q4s_o8n4r_t4k7v
Note: Some functionalities may not be available on Safari, please open the frontend with
Google Chrome.

Our application is divided into two folders: frontend and backend
If one wants to test our application, they need to run them separately.
Backend:

- ssh into the remote student server
- clone the project into the remote machine
- direct to the backend folder using terminal
- “npm install” all the packages required
- create a .env file at the backend root directory and enter all the required information

(the same as tutorial 2)
- “sh remote-start.sh” once all the packages are installed
- open a new local terminal and direct to the backend folder
- run “.\scripts\win\server-tunnel.cmd” if using windows
- enter the cwl ID and password
- the terminal should then prompt you the port number where the backend is running

Frontend:
- clone the project into a local machine
- open the terminal and direct to the frontend folder
- “npm install” all the packages required
- create a .env.local file at the frontend root directory and create one variable:

- REACT_APP_API_URL=http://localhost:[port]
- and change the port number to the one specified by the backend terminal
- Note: whenever restarting the backend, and if the port is changed, one needs to

change the port number in this file and restart the frontend server
- “npm start” the server once all packages are installed
- by default, the server should be running at localhost:3000

Brief Summary:

This project models the Belcarra Beachkeepers summer program, in which volunteers
conduct research on the crabs at a local provincial park, as well as educate park visitors
about conservation. Entities include volunteers, supervisors, park visitors and crabbers, their
crabs and traps, and logistics like roles and shifts. This project is intended to help staff
schedule shifts and manage scientific data about the crabs and visitors, as well as make the
research insights publicly available.

Users can login as either a Volunteer or a Supervisor, which sends them to their respective
Dashboards. Their Dashboard loads basic statistics about them, including when their next
shift is, the number of crabs caught/studied, and number of visitors they’ve interacted with.

https://github.students.cs.ubc.ca/CPSC304-2024S-T2/project_i1q4s_o8n4r_t4k7v
https://www.facebook.com/share/v/yH8hmMeMhDocU8WX/

University of British Columbia, Vancouver
Department of Computer Science

From here, both volunteers and supervisors can switch to the Calendar page through the top
menu bar. On the Calendar page, supervisors can create and delete shifts, while volunteers
can sign up for certain roles on certain shifts.

Volunteers can uniquely navigate to the Upload page, where they can log crab, trap, and
park visitor interaction data, which will update the database and be reflected on the General
Insights and Crab Insights pages.

General Insights and Crab Insights are two pages that are also accessible to the public, so no
login is necessary. Public users on the landing page can click “Guest? See our public page!”
to be redirected to the public page. Here, they can perform most of the queries, such as join,
projection, and all kinds of aggregations.

Script:

Our script is named as: beachkeepers.sql
Located inside: repository root/backend/beachkeepers.sql

This script will drop & create all the tables inside the schema.

To run this script, we have two ways:
1. Login to sqlplus on the remote server and manually run the script by start

beachkeepers.sql (recommended)
2. Initialize the remote server and go to: localhost:[port#]/initialize-beachkeepers

This will automatically execute the file and populate the data, but sometimes it might
fail due to dropping non-existent tables.

University of British Columbia, Vancouver
Department of Computer Science

Final Schema:

Supervisor(employeeID: INTEGER, firstName: VARCHAR, lastName: VARCHAR, phone:
VARCHAR, email: VARCHAR, password: VARCHAR)
● Primary key = employeeID, combination of firstName and lastName needs to be

unique

Volunteer(volunteerID: INTEGER, firstName: VARCHAR, lastName: VARCHAR, experience:
INTEGER, employeeID: INTEGER, password: VARCHAR)
● Primary key = volunteerID, employeeID is a FK to Supervisor and is NOT NULL,

Role(roleName: VARCHAR, date: date, difficulty: INTEGER, location: VARCHAR)
● Role is a weak entity that relies on Shift, with partial key = roleName, and primary

key = (roleName, date), where date is a FK to Shift and is NOT NULL

Registers(volunteerID: INTEGER, positionname: VARCHAR, shift_date: date)
● Registers is a separate table because it represents many-to-many, primary key =

(volunteerID, roleName, date), volunteerID is a FK to Volunteer, roleName and date
are FKs to Role (two attributes because Role is a weak entity with a partial key)

Shift(date: date, lowTide: CHAR, highTide: CHAR)

ParkVisitor(phone: VARCHAR, firstName: VARCHAR, age: VARCHAR)

Crabber(phone: VARCHAR, licenseNum: INTEGER, volunteerID: INTEGER)
● Primary key = phone (also a FK as this is superclass’s PK), volunteerID is a FK to

Volunteer and is NOT NULL, licenseNum must be UNIQUE

Tourist(phone: VARCHAR, pref_language: VARCHAR, homeCountry: VARCHAR)
● Primary key = phone (also a FK as this is superclass’s PK)

Interacts(volunteerID: INTEGER, phone: VARCHAR, topic: VARCHAR)
● Interacts is a separate table because it represents many-to-many, primary key =

(volunteerID, phone), volunteerID is a FK to Volunteer, phone is a FK to ParkVisitor

Trap(trapID: INTEGER, baitType: VARCHAR, trapType: VARCHAR, location: VARCHAR,
successRate: DOUBLE, phone: VARCHAR)
● Primary key = trapID, phone is a FK to Crabber and is NOT NULL

Crab(crab#: INTEGER, species: VARCHAR, sex: CHAR(1), INTEGER, injury: VARCHAR, trapID:
INTEGER)

Studies(volunteerID: INTEGER, crab#: INTEGER)
● Studies is a separate table because it represents many-to-many, primary key =

(volunteerID, crab #), volunteerID is a FK to Volunteer, crab # is a FK to Crab

University of British Columbia, Vancouver
Department of Computer Science

Schema Screenshots:

We have created two endpoints: /tables and /tables/fetch?tableName=
/tables will fetch all the table names in our database, and
/tables/fetch?tableName= will fetch all the tuples of the table with given table name

Note: Some schemas have been normalized into more tables.

Output of all tables through “/tables/fetch?tableName=”:

Supervisor(employeeID: INTEGER, firstName: VARCHAR, lastName: VARCHAR, phone:
VARCHAR, email: VARCHAR, password: VARCHAR)

Email(firstName: VARCHAR, lastName: VARCHAR, email: VARCHAR)

Volunteer(volunteerID: INTEGER, firstName: VARCHAR, lastName: VARCHAR, experience:
INTEGER, employeeID: INTEGER, password: VARCHAR)

University of British Columbia, Vancouver
Department of Computer Science

Position(positionname: VARCHAR, shift_date: DATE, difficulty: INT, pos_location: VARCHAR)

Registers(volunteerID: INTEGER, positionname: VARCHAR, shift_date: date)

Shift(date: date, lowTide: CHAR, highTide: CHAR)

University of British Columbia, Vancouver
Department of Computer Science

ParkVisitor(phone: VARCHAR, firstName: VARCHAR, age: VARCHAR)

Crabber(phone: VARCHAR, licenseNum: INTEGER, volunteerID: INTEGER)

University of British Columbia, Vancouver
Department of Computer Science

Tourist(phone: VARCHAR, pref_language: VARCHAR, homeCountry: VARCHAR)

Interacts(volunteerID: INTEGER, phone: VARCHAR, topic: VARCHAR)

University of British Columbia, Vancouver
Department of Computer Science

Trap(trapID: INTEGER, baitType: VARCHAR, trapType: VARCHAR, trap_location: VARCHAR,
phone: VARCHAR)

Crab(crab#: INTEGER, species: VARCHAR, sex: CHAR(1), INTEGER, injury: VARCHAR, trapID:
INTEGER)

University of British Columbia, Vancouver
Department of Computer Science

Studies(volunteerID: INTEGER, crab#: INTEGER)

University of British Columbia, Vancouver
Department of Computer Science

University of British Columbia, Vancouver
Department of Computer Science

Queries:

NOTE: All the queries are available inside: “repo root/backend/appService.js”
List of queries: (function, location, functionality, bold if used to demonstrate)

1. initializeBeachkeepers()
a. Line: 141
b. Functionality: execute all lines inside the sql script that is used to drop, create

tables and insert dummy data. Helps to skip having to manually doing sqlplus
Ora_CWL@stu… start beachkeepers.sql

2. fetchAllTables()
a. Line: 80
b. Functionality: fetch all the table names available in the database.

Used to help the demonstration of the other queries.
3. fetchAllColumns(table)

a. Line: 100
b. Functionality: fetch all the column names of the given table name.

Used to assist the Projection functionality.
4. fetchAllTuplesOfColumns(table, columns)

a. Line: 121
b. Functionality: fetch all the tuples with the selected columns from a specified

table.
c. Used to demonstrate Projection operation.

5. fetchAllTuples(tableName)
a. Line: 170
b. Functionality: fetch all tuples from a specified table.

Used to help the demonstration of the other queries.
6. insertTrapData(baittype, traptype, location, age, trapid, phone)

a. Line: 524
b. Functionality: insert a trap tuple with given attributes into the trap table.

7. insertCrabData(crabid, species, sex, crab_size, injury, trapid)
a. Line: 202
b. Functionality: insert a Crab tuple with given attributes into the crab table
c. Used to demonstrate INSERT operation.

8. checkCrabIdExists(crabid)
a. Line: 223
b. Functionality: check if a crab with the given CrabID exists in the crab table

Used to assist the INSERT and UPDATE functionalities.
9. updateCrabData(crabid, species, sex, crab_size, injury, trapid)

a. Line: 246
b. Functionality: update a Crab tuple with given crabID and other attributes
c. Used to demonstrate UPDATE operation.

10. crabRegularQuery(species, sex, injuries, minSize)
a. Line: 271
b. Functionality: fetch all crab tuples with specific restrictions
c. Used to demonstrate Selection operation.

University of British Columbia, Vancouver
Department of Computer Science

11. crabDetailedQuery(species, sex, injuries, minSize, baitType)
a. Line: 320
b. Functionality: join the crab and trap tables and fetch all tuples with specific

restrictions. Shows the crab info and the trap info that caught this crab.
c. Used to demonstrate Join operation.

12. crabSpecialQueryBiggestCatch(species, sex, injuries)
a. Line: 379
b. Functionality: group the crabs by their species and find the maximum

weighted crabs of each species.
c. Used to demonstrate Aggregation with GROUP BY operation.

13. crabSpecialQueryCrabCount(species, sex, injuries, minSize, minCaught)
a. Line: 425
b. Functionality: join the crab and trap tables, group them by trap location and

count how many crabs are caught in each trap location.
c. Used to demonstrate Aggregation with HAVING operation.

14. fetchPositions(shiftDate)
a. Line: 487
b. Functionality: fetch all the positions assigned to the shift at a given shift date

15. deleteShift(shiftDate)
a. Line: 550
b. Functionality: delete a shift tuple with specific shift date from the shift table.

Will also delete all the position tuples and the registers tuples.
c. Used to demonstrate DELETE operation.

16. insertSupervisor(firstname, lastname, password, phone)
a. Line: 577
b. Functionality: insert a supervisor tuple with given attributes, executed during

the sign up process.
17. insertEmail(firstname, lastname, email, employeeid)

a. Line: 604
b. Functionality: insert the email tuple into the email tuple that is denormalized

from the supervisor schema, executed during the sign up process.
18. insertVolunteer(firstname, lastname, employeeid, password, experience = 0)

a. Line: 631
b. Functionality: insert the volunteer tuple with given attributes, executed

during the sign up process.
19. logIn(isVolunteer, firstname, lastname, password)

a. Line: 659
b. Functionality: check if the volunteer or supervisor exists in the database,

executed during the login process.
20. getSupervisorIdByName(firstname, lastname)

a. Line: 687
b. Functionality: get the supervisor id of the given supervisor first and last name.

21. getVolunteerIdByName(firstname, lastname)
a. Line: 712
b. Functionality: get the supervisor id of the given supervisor first and last name.

University of British Columbia, Vancouver
Department of Computer Science

22. checkParkVisitorExists(phone)
a. Line: 737
b. Functionality: check if the park visitor exists in the database, used during

inserting interaction tuples.
23. checkCrabberExists(phone)

a. Line: 755
b. Functionality: check if the crabber exists in the database, used during

inserting trap tuples.
24. insertPV(age, firstname, phone)

a. Line: 774
b. Functionality: insert a park visitor tuple with given attributes, only park visitor

inserted allows users to insert crabber, the ISA subclass, with the same
primary key.

25. insertCrabber(phone, licenseNumber)
a. Line: 800
b. Functionality: insert a crabber tuple with given attributes, help creating the

ISA relationship.
26. insertInteraction(phone, topic)

a. Line: 826
b. Functionality: insert a interaction tuple that represent the relationship of

volunteer interacts with a park visitor
27. getAvgVolunteerStudiedCrabs()

a. Line: 852
b. Functionality: group the crabIDs from studies table by volunteerID, and

calculate the average count of crabIDs of each volunteer
c. Used to demonstrate Nested Aggregation operation.

28. fetchSpecialTrapIDs()
a. Line: 884
b. Functionality: Find the traps that caught all kinds of crabs
c. Used to demonstrate Division operation.

University of British Columbia, Vancouver
Department of Computer Science

INSERT Operation:
We have created multiple INSERTION queries for different tables, and we will be
demonstrating with inserting crab data:

- Crab:
- Function: insertCrabData(crabid, species, sex, crab_size, injury, trapid)
- Line: 202

Demonstration:
- Frontend URL: “localhost:3000/volunteer/dataUpload”
- Before:

We can see that there are no crabs after CrabID = 268, and we will be inserting a new crab
into the database with CrabID = 300.

- During:

In the data upload page, we will have three sections, uploading crab, trap and interaction.
For this demonstration, we will only enter data into the Crab section.

Now, we have entered all the fields in the
report form, by clicking submit, our
frontend will send a POST request to the
backend, if we successfully added the
data, we will receive a notification
indicating submission successful (see
below).

University of British Columbia, Vancouver
Department of Computer Science

Notice that in the meantime, the indication saying “uploading new crab” now transforms
into a red “crab exists in system”, and the submit button switches to update. We will explain
updates later.

- After:

When we refresh the data, we can see that we got a new crab that has all the fields we have
entered.

University of British Columbia, Vancouver
Department of Computer Science

DELETE Operation:
We only have one delete operation used to delete shifts:

- Shift
- Function: deleteShift(shiftDate)
- Line: 550

Demonstration:
- Frontend url: “localhost:3000/supervisor/calendar”
- Before:

We have got five shifts in our database and they
have been displayed both in “volunteer/calendar”
and “supervisor/calendar”. Since the dummy shifts
are in July, please navigate the calendar to the
correct month to see them displayed.

- During:

In the above picture, we can see that there are two July shifts and one June shift displayed
on the calendar. As the supervisor, we can click on the shift block, and the “create shift”
button on the bottom right corner will turn into a “delete shift” button.

University of British Columbia, Vancouver
Department of Computer Science

If we click on “Delete Shift” and
refresh the page, we will see the shift
is removed from the calendar.

- After:
In the meantime, the data in “/tables/fetch?tableName=shift” will be removed too.

University of British Columbia, Vancouver
Department of Computer Science

UPDATE Operation:
We have introduced our only UPDATE operation previously inside INSERT crab, where if the
crabID exists, we will prompt the user that the data will update the existing crab.

- Crab:
- Function: updateCrabData(crabid, species, sex, crab_size, injury, trapid)
- Line: 246

Demonstration:
- Frontend URL: “localhost:3000/volunteer/dataUpload”
- Before:

We have a set of crab data starting from crabID = 1, let's modify the first crab and change all
of its attributes.

- During:
In the upload page, we have just entered 1 into
the Crab ID section. After communicating with
the backend, we are notified that this crab
exists in our database; thus, the “Submit”
button now changes to “Update”.

The original crab has the attributes of:
"SPECIES":"Red rock",
"SEX":"M",
"CRAB_SIZE":108,
"INJURY":"Y",
"TRAPID":5

Lets change them to:
"SPECIES":"Shore",
"SEX":"F",
"CRAB_SIZE":70,
"INJURY":"N",
"TRAPID":3

After clicking “Update”, the frontend will send
a PUT request to the correct backend endpoint
and trigger the updateCrabData function.

University of British Columbia, Vancouver
Department of Computer Science

Similar to submit, a green notification will be displayed at the center of the screen if the
update is successful.

- After:
In the meantime, the data in “/tables/fetch?tableName=crab” will be modified too.

University of British Columbia, Vancouver
Department of Computer Science

Selection Operation:
We have created multiple SELECTION queries for different purposes, for the demonstration
we will be using:

- Querying crab data based on restrictions over its attributes
- Function: crabRegularQuery(species, sex, injuries, minSize)
- Lline: 271

Users can manually specify specific species, sex, injuries, and minimum size on the
frontend GUI, and the Query will select the crabs with correct specification. These data will
then be displayed in the frontend.

Demonstration:
- Frontend URL: “localhost:3000/public/crab-insight”
- Before:

We can see that we have populated our database with various many diverse examples, such
as different species, sex, size and injury.
NOTE: The first crab data has been modified due to the Update operation

Similarly, we can see these data at “public/crab-insight”:

University of British Columbia, Vancouver
Department of Computer Science

This page allows users to specify what data they wish to query. If nothing is specified, the
query will act normally as selecting all tuples from the crab table.

After clicking submit, we can see that
the data are displayed in the order of
crabID, and the first crab is the one we
have updated previously.

- During:
Now we will perform selection with parameters specified.

Here, we will look for Red Rock crabs that are female, no injuries, and at least 90 mm wide.
After clicking submit, we will see the data displayed as follows:

- After:

As we can see, there are only two
crabs that satisfy the specification.
This can also be proven by manually
searching up in all the tuples.

University of British Columbia, Vancouver
Department of Computer Science

Notice that although we found three female red rock crabs, one of them is only 85 mm wide,
which is smaller than our specified crab size. Thus will not be selected from the table.

University of British Columbia, Vancouver
Department of Computer Science

Projection Operation:
The projection operation is available inside

- projecting specified columns of a given table and fetch all tuples
- Function: fetchAllTuplesOfColumns(table, columns)
- Line: 121

Demonstration:
- Frontend URL: “localhost:3000/public/general-insight”
- Before:

The above are two tables with four or more attributes: trap, and crab. For this
demonstration, we will go with the trap table. Lets first head to the frontend page,
“/public/general-insight”:

In this page, users may freely select any table that is available inside our database and
specify the columns they want to see.

- During:
For example, if we want to see only the traptype and trap_location of the traps, we
can do the following.

1. Select the desired table from the drop down menu.

University of British Columbia, Vancouver
Department of Computer Science

2. Select the columns present in the database.

NOTE: the table options and the column options in the drop down menu and the checkboxes
are handled by fetch operations that can look for all tables and all columns. Thus we do not
need to worry about changing the schema.

- After:
We have now specified all the columns we wish to see; we can then click “Fetch Data” to see
them displayed.

We can see that only the traptype and the trap_location are displayed on the page. The
same will happen if we select one more column, baittype.

Clearly, only the three specified columns are displayed.

We can also see that the data being displayed matches exactly with the order of querying all
tuples from the trap table with no restriction.

University of British Columbia, Vancouver
Department of Computer Science

Join Operation:
The join operation is present over:

- Fetch all crabs and trap that caught these crabs
- Function: crabDetailedQuery(species, sex, injuries, minSize, baitType)
- Line: 320

This operation joins the crab table and the trap table, and displays the crab data and the
trap that caught this crab. Similar to the previous Selection Operation, users may specify the
specific crab species, sex, injuries, and minimum size to filter out the unwanted crabs.
Moreover, users may also specify the baitType to apply a more detailed restriction on the
traps.

Demonstration:
- Frontend URL: “localhost:3000/public/crab-insight”
- Before:

We can see that most traps use chicken as their baittype, only a few use turkey. Let’s try to
find a crab that is caught by a turkey bait trap. Let’s navigate to our frontend,
“/public/crab-insight”:

- During:
Our page is the same as the one used to demonstrate select operations; however, specifying
the Query Mode as “Detailed”, we can enable the join functionality.

University of British Columbia, Vancouver
Department of Computer Science

As we can see, if we set the Query Mode drop down menu to detailed, a new bait type drop
down menu will appear, and this is where we can set restrictions to the trap table. Let’s
firstly see the join operation with out specific bait type:

Here, we are looking for male Graceful crabs with no injuries and at least 85 mm. Let’s see
our query result:

- After:

Seems like only three crabs satisfy the
specifications, and only one of them is
caught by the turkey bait trap.

Intuitively, if we specify the bait type to
turkey, only one tuple should be displayed.

University of British Columbia, Vancouver
Department of Computer Science

And that is what happens. Only one crab with our specifications is caught by a turkey bait
trap.

University of British Columbia, Vancouver
Department of Computer Science

Aggregation with GROUP BY Operation:
We will demonstrate aggregation on the same frontend page as the join and selection
operation, and the function in the backend is located at:

- Group the crabs by species and find the biggest ones of each type.
- Function: crabSpecialQueryBiggestCatch(species, sex, injuries)
- Line: 379

Demonstration:
- Frontend URL: “localhost:3000/public/crab-insight”
- Before:

Let’s first navigate to the frontend page, “public/crab-insight”

We can see that there are five different types of crabs available
in the database.

NOTE: There were no Green and Shore crabs in our sql script;
however, we have added a Green crab through the INSERT
operation and changed a crab’s species to Shore through the
UPDATE operation during demonstration.

- During:
Let’s now change the Query Mode to “Special”

A new drop down menu, “Special Requirement” will appear. By default, we will be looking
for “the biggest crab caught of each species”. The other one, “number of crabs caught in
each location” is used for “Aggregation with Having”, which will be demonstrated in the next
section.

- After:
As we can see below, only five tuples, one of each kind of crab species, are selected from the
database. The BiggestCatch shows the maximum weight of each kind of crab, the values for
Green and Shore crabs match exactly as the Green and Shore crabs we have just inserted
and updated.

University of British Columbia, Vancouver
Department of Computer Science

We can also verify the other species by going to “Regular” query mode used in the selection
operation and specifying the minimum size to the BiggestCatch. For example:

We can see that only one Dungeness crab is selected from the database with the minimum
size at 152 mm, which proves that our biggest catch operation is correct.

University of British Columbia, Vancouver
Department of Computer Science

Aggregation with HAVING Operation:
We will demonstrate aggregation on the same frontend page as the join, selection, and
aggregation with group by operations, and the function in the backend is located at:

- Find the number of crabs caught in each location
- Function: crabSpecialQueryCrabCount(species, sex, injuries, minSize,

minCaught)
- Line: 425

Demonstration:
- Frontend URL: “localhost:3000/public/crab-insight”
- Before:

There are four trap locations in our database: “East”, “Main”, “North”, and “South”.

- During:
Let’s navigate to the frontend page: “/public/crab-insight”, change the query mode to
“Special”, and specify the special requirement as “number of crabs caught in each location”.

We can see that a new number input box, minimum caught, appears; this will allow users to
filter out locations that caught crabs under this specified number. Let’s first query without
minimum caught specification.

- After:

University of British Columbia, Vancouver
Department of Computer Science

The traps together have caught 17 crabs in the North shore, which is the lowest in all
locations. If we set the minimum catch number to 18, supposedly the north shore will be
filtered out.

NOTE: Both Aggregation with Group By and Aggregation with Having can be further
combined with the regular specifications. E.g, users can see what are the largest male crabs
with injuries, or how many graceful crabs of at least 90 mm are caught in each location.

- Largest size for the male crabs with injuries:

- Number of graceful crabs of at least 70 mm caught in each location:

University of British Columbia, Vancouver
Department of Computer Science

Nested Aggregation with GROUP BY Operation:
We will demonstrate aggregation on another page, the same as the one we used to
demonstrate projection: “localhost:3000/public/general-insight”
The function in the backend is located at:

- group the crabIDs from studies table by volunteerID, and calculate the average count
of crabIDs of each volunteer

- Function: getAvgVolunteerStudiedCrabs()
- Line: 852

Demonstration:
- Note: We have re-initiated the database for better demonstration purposes.
- Frontend URL: /public/general-insight
- Before:

Let’s first see how many “studies” tuple exists in our database:

There are roughly 136 tuples
here, which means the
volunteers have studied 136
crabs.

And we have 16 volunteers in
our database.

- During:
Now let’s go to the frontend page, and select the table to view as Volunteer.

After clicking “Fetch Data”, we can see that all the volunteer tuples are being fetched out,
and if we scroll to the bottom of the page we can see a line displaying the average number
of crabs studied by each volunteer.

University of British Columbia, Vancouver
Department of Computer Science

- After:

We can see that on average each volunteer studied 8.5 crabs. This is true by 136 studied / 16
volunteers = 8.5 crabs studied by each volunteer.

University of British Columbia, Vancouver
Department of Computer Science

Division Operation:
We will demonstrate division on the same page as the one we used to demonstrate
projection and Nested Aggregation with GROUP BY: “localhost:3000/public/general-insight”
The function in the backend is located at:

- Find the traps that caught all kinds of crabs
- Function: fetchSpecialTrapIDs()
- Line: 884

Demonstration:
- Frontend URL: /public/general-insight
- Before:

Right now we have re-initialized our database. By default, we have only populated our
database with three out of five different kinds of crab species. If we head to the frontend
page, and select to display the tuples of traps, we will receive an error:

This is because right now no traps have caught all five kinds of crabs. Let’s go to the
volunteer upload page and update the first five crabs with ID (1,2,3,4,5), each to a different
species and assign the Trap ID = 1.

And we will perform three more update operations similar to the above pictures.

University of British Columbia, Vancouver
Department of Computer Science

As we can see, the first five crabs are each having a different species, and all of them have
been caught with Trap ID = 1. Now let’s go back to the general insight page and fetch the
data one more time.

- After:
This time, the data is fetched successfully

And as we can see, after all the trap tuples, we have another section displaying all the
trapIDs that caught all five kinds of traps. As we expected, only the trap with trapID = 1 is
being displayed.

